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Political relationships often vary over time, but standard models ignore temporal variation

in regression relationships. We describe a Bayesian model that treats the change point in

a time series as a parameter to be estimated. In this model, inference for the regression

coefficients reflects prior uncertainty about the location of the change point. Inferences

about regression coefficients, unconditional on the change-point location, can be obtained

by simulation methods. The model is illustrated in an analysis of real wage growth in 18

OECD countries from 1965–1992.

1 Introduction

Conventional statistical models fail to capture historical variability in political relation-

ships. These models are poorly suited for analyzing periods in which there are basic shifts

in institutions, ideas, preferences, or other social conditions (Büthe 2002; Lieberman

2002). Despite the limits of conventional models, the importance of historical variability in

political relationships is widely claimed. Historical institutionalists in comparative politics

offer some substantive motivation: ‘‘Political evolution is a path or branching process and

the study of points of departure from established patterns becomes essential to a broader

understanding of political history’’ (Thelen and Steinmo 1992, p. 27). Lieberman (2002, p.

96) makes a similar point: ‘‘What we are after is an explanation not of ordinary predictable

variation in outcomes but of extraordinary change, where relationships among explanatory

factors themselves change.’’

Statistical analysis can begin to meet this challenge by examining temporal instability in

quantitative relationships. In the analysis of regression models, temporal instability is

studied in two main ways. First, researchers offer explicit theories about the timing of

structural breaks in regressions (e.g., Schickler and Green 1997; Mitchell et al. 1999;

Richards and Kritzer 2002). Second, an influential sociological paper by Isaac and Griffin

(1989) rejects ‘‘a-historicism in time series analysis’’ in favor of an historically sensitive

approach in which structural instability is an ever-present possibility.

Specific theories of the timing of structural breaks lead to formal tests of change points,

while the ‘‘historical time series analysis’’ of Isaac and Griffin (1989) takes a diagnostic
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approach. Where specific theories are proposed, a change point in the regression is usually

specified a priori and modeled with a dummy variable for time points after the change

point. The change-point dummy might be used to describe a mean shift in the dependent

variable or to allow for a change in the effects of covariates. For example, Richards and

Kritzer (2002) argue that U.S. Supreme Court decisions are shaped by historically variable

jurisprudential regimes. A regime of content neutrality in freedom of expression cases was

established by several decisions in 1972. The effects of attitudes of the justices on free

expression cases are smaller after the establishment of the new regime. Inference about the

difference in effects before and after 1972 is provided by a chi-square test. In contrast, the

diagnostic approach proceeds without a formal test of a parametric model for a change

point. Structural instability is detected, for example, with plots of regression coefficients

estimated for data within a window of time that moves along the series (Isaac and Griffin

1989, p. 879).

Formal parametric tests and diagnostic methods each have different limitations. Say we

test for a mean shift in some outcome at time h. Data indicating a break before h should

count against the hypothesis, but the observed difference in means before and after h may

lead us to find in favor of our hypothesis. Formal tests at least provide an inference about

a change point. Searching for change points with diagnostics risks mistaking random

variation for structural change. Also, if a model is fit after diagnostics are used to locate

a change point, conventional t statistics and p values do not reflect prior uncertainty about

the timing of structural shifts.

This paper describes a simple Bayesian model for change points that combines the

advantages of diagnostic and parametric approaches but addresses their limitations.

Parametric models assume the location of a change point, but diagnostic methods allow the

timing of change to be discovered from the data. Like diagnostic methods, the Bayesian

analysis treats the timing of change as uncertain and the location of a change point as

a parameter to be estimated. This approach allows evidence for a change before

a hypothesized date to count against the hypothesis. Like parametric models, the Bayesian

model yields statistical inferences about regression coefficients. However, these inferences

reflect prior uncertainty about the location of the change point that is unaccounted for in

conventional models.

The Bayesian change-point model can be estimated using the Gibbs sampler. Although

the model is relatively simple, estimation is computer intensive and requires some

programming facility. We thus describe a simple alternative method that can, in part, be

calculated using standard regression output.

2 An Ad Hoc Method for Studying Change Points

If we think that the effects of causal variables change over time, we can model this with

a dummy variable that takes the value of zero up to the time point marking the end of the

first regime, and the value of one thereafter. For example, Isaac and Griffin (1989) studied

the relationship between strikes and labor union density in the United States. They argued

that the relationship between strikes and unionization changed after the Supreme Court

upheld the National Labor Relations Act in 1937. To capture this changing relationship,

we could define a dummy variable It that equals 0 for each year up to 1936 and 1 for years

1937 and following. A model for the dependence of strikes, St, on unionization, Ut, would

then be written:

St ¼ b0 þ b1Ut þ b2It þ b3ItUt þ et;
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where et is an error term. Before 1937, the effect of unionization on strikes is given by the

regression coefficient, b1. After 1937, the effect is b1 þ b3.

We can write the dummy variable more generally as a function of the change-point

year, It(1937). Even more generally, we can replace a specific change point with

a variable, h, whose value is not yet specified. In this case, the Isaac-Griffin model would

be written:

St ¼ b0 þ b1Ut þ b2ItðhÞ þ b3ItðhÞUt þ et:

In addition to the regression coefficients, the model now has the change point, h, to

estimate.

How can we estimate the location of the change point? A simple method tries a range of

values for h and examines the model’s goodness of fit. We could begin by assuming that

the change point for the Isaac-Griffin model came in 1915 rather than 1937. Under this

specification, the variable It(h ¼ 1915) ¼ 0 for years before 1915 and It(h ¼ 1915) ¼ 1 for

years 1915 and after. We fit a model with this period effect and record the R2 statistic.

Next we try h ¼ 1916 and so on. Calculating R2 for h ¼ 1915, 1916, . . . , 1950 yields

a sequence of R2 statistics that can be plotted. We can then choose the value of h with the

maximum R2.

We illustrate this approach with some artificial data where the location of a change

point is known. Two time series of length 100, xt and yt, are generated. A set of fixed

values is chosen for xt. The dependent variable, yt, is generated according to

yt ¼ :5 þ :5xt þ :5Itð37Þ þ :4Itð37Þxt þ et;

where It(37) is a dummy variable that equals 0 up to t ¼ 36, and 1 from t ¼ 37, . . . , 100,

and et consists of 100 random deviates generated from a normal distribution with mean

0 and standard deviation .5. With these artificial data, the change point h ¼ 37. The data

are shown in Fig. 1. The time series (top panel) provide a small suggestion of a change

point at t ¼ 37, but a clearer picture is given by the scatterplot in the lower panel. The

scatterplot shows that the regression line for the first regime is supported mostly by low

values of xt, while the regression line for the second regime is supported mostly by large

values of xt. The difference in slopes is relatively small, but the difference in intercepts is

clearly indicated.

Implementing our ad hoc method to estimate the change point, we fit 81 regression

models with ordinary least squares (OLS), trying change points from h ¼ 10, . . . , 90.

These 81 models yield a time series of R2 statistics (Fig. 2). The maximum R2 comes at

h ¼ 41, close to, but not exactly equal to, our known change point of h ¼ 37.

This ad hoc method of searching for the best-fitting change point has a good statistical

justification. Assuming that the error term is normally distributed, the time series of R2

statistics is proportional to the profile log likelihood for h. The time point of maximum R2

(t ¼ 41 for our artificial data) is the maximum likelihood estimate of h. Defining the

dummy variable and fitting the time series is easily done using standard statistical

software. Thus maximum likelihood estimation of h is simple, if somewhat laborious.

Having estimated the change point, h, how do we estimate the regression coefficients?

A naive approach estimates the coefficients conditional on the maximum likelihood

estimate of h. After estimating ĥ ¼ 41, say, we can calculate the regression coefficients,

their standard errors, and p values using OLS. Conventional standard errors and p values
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will be too small, however, increasing the risk of an incorrect inference of statistically

significant effects. These inferences are optimistic because the model assumes with

certainty that h ¼ 41 for the purposes of calculating the coefficients, but h itself is

uncertain and estimated from the data. By using the data to search for the best-fitting

model and to estimate that model’s coefficients, significant results are more likely due to

random variation than conventional p values suggest (Freedman 1983). From a Bayesian

perspective, inferences about the coefficients are optimistic because we have not correctly

accounted for our uncertainty about h. In sum, the ad hoc method can be used for

maximum likelihood estimation of h but should should not be used to estimate regression

coefficients because it ignores uncertainty about the location of the change point. The

Bayesian model averages over this uncertainty to obtain correct inferences about the

coefficients.

3 The Bayesian Change Point Model

Consider a regression model for the dependent variable, yt, of the form

ŷt ¼ b0 þ b1xt þ b2ItðhÞt þ b3ItðhÞtxt t ¼ 1; . . . ; T;

or equivalently in matrix notation,
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Fig. 1 The top panel shows 100-point time series for the artificial data, x and y, where a change in the

relationship between the variable occurs at time point t ¼ 37. The bottom panel is a scatterplot of x
against y, with two regression lines fitting the time points t, 37 (open circles) and t� 37 (filled circles).
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ŷ ¼ Xhb; ð1Þ

where the change point indicator It(h) ¼ 0 for t , h and It(h) ¼ 1 for t � h, y is a vector of

observations on the dependent variable, the matrix Xh includes all regressors, and b is

a vector of regression coefficients. We write Xh as a function of h because different change

points will yield different regressors. Assuming that y conditionally follows a normal

distribution, the contribution of an observation, yt, to the likelihood of h is

Ltðh; ytÞ}
1ffiffiffiffiffiffi
2p

p
r

exp �ðyt � ŷtÞ2

2r2

" #
; ð2Þ

where the likelihood depends on h through the regression function in Eq. (1). For a given

change point, say h ¼ k, the likelihood evaluates to L(h ¼ k; y) }
Q

t Lt(h ¼ k; yt). Here the

error variance is written as r2, but we shall work with the precision s ¼ r�2. Because the

likelihood function for this model is discontinuous for discrete values of h, it is difficult to

obtain unconditional inferences about the regression coefficients, b, using standard

likelihood methods.

3.1 Prior Distributions for the Change Point Model

We can obtain inferences about the change point and the coefficients using a Bayesian

approach that specifies prior distributions for the parameters. The priors and the likelihood

can be written as follows:

pðsÞ ¼ Gammaðn0; s0Þ
pðbÞ ¼ Nðb0;V0Þ
pðhÞ ¼ ðT � 1Þ�1; h ¼ 1; . . . ; T � 1

pðy j XhÞ ¼ Nðŷ; s�1Þ;

where Gamma(a, b) is a gamma distribution with shape parameter a and expectation a/b.

The prior for h is a discrete uniform distribution that allocates equal prior probability to
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Fig. 2 Time series of R2 statistics, from regressions on artificial data for x and y, h ¼ 10, 11, . . . , 90.
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each time point. A noninformative prior for s sets n0 and s0 to small positive numbers, say

.001. A noninformative prior for the coefficients sets b0 ¼ 0 and V0 to a diagonal matrix

with large prior variances, say 100.

Estimation of this model can be approached in three ways. Full conditional posterior

distributions can be used to form a Gibbs sampler for posterior simulation. Alternatively,

Chin Choy and Broemeling (1980) derive an expression for the marginal posterior of h.

Even more simply, inference for h and the coefficients might be based on the profile log

likelihood, a function of the residual sums of squares from OLS regressions.

3.2 The Gibbs Sampler

The Gibbs sampler is a method for Bayesian estimation that simulates draws from the

posterior distribution. To implement the Gibbs sampler, posterior distributions are

specified for each parameter conditional on all the other parameters in the model. Sampling

from these full conditional posterior distributions ultimately yields draws from the

unconditional posterior distribution (e.g., Jackman 2000). In principle, the Gibbs sampler

is an extremely flexible tool for Bayesian inference allowing the estimation of any model

for which full conditional posteriors can be specified.

The Gibbs sampler begins by setting initial values of the change point, the precision,

and the regression coefficients. The sampler randomly draws one of these parameters—

written h*, s*, and b*—conditional on current values for the others:

1. Draw the precision s* from Gamma(n0 þ n/2, s0 þ SS*/2), where the current value

of the sums of squares SS* ¼
P

e�t , and e�t ¼ yt � x9h�tb*.

2. Draw the vector of regression coefficients from the multivariate normal distribution

N(b1, V1), with mean vector b1 ¼ V1(V0b0 þ s*X9h�y), and covariance matrix V1 ¼
(V�1

0 þ s*X9h�Xh*)�1.

3. Draw the change point from the discrete distribution p(h ¼ t j y) ¼ L*(h ¼ t; y)/P
t L*(h ¼ t; y), where the likelihood in Eq. (2) is evaluated at each time point h ¼

1, . . . , T � 1 using current values of the parameters b* and s*.

The algorithm is termed a blocked Gibbs sampler, because step 2 updates the block of all

coefficients under all the change points. The Gibbs sampler can also accommodate a more

general model in which a regression with no change point is included a priori. For this

specification, p(h j y) in step 3 also evaluates the likelihood of y ¼ Xb, including just the

covariate xt, setting coefficients b2 ¼ b3 ¼ 0.

In the simulation experiments below we obtained good performance for a small

regression on one predictor with a burn-in of 100 iterations, and a sequence or chain of

2000 iterations. The method is computer intensive compared to some other Gibbs sampler

applications because the probability of h must be evaluated for every time point for every

iteration. The Gibbs sampler is useful because it automatically provides inferences about

the regression coefficients. The algorithm can also be generalized to introduce informative

priors for the coefficients or h if we have substantive knowledge about the effects or the

location of the change point. Other likelihoods can also be specified for y. For example,

the Gibbs sampler could be used to detect structural breaks in event history models or in

panel data with heterogeneous error variances. Results for an error-heterogeneity model

with an informative prior on h are reported in the application below.

A significant practical challenge for analysis with the Gibbs sampler involves assessing

convergence of the algorithm. If the Gibbs chain is not stationary and the mean of the

chain shifts as it moves over the parameter space, the algorithm may not adequately
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sample from the unconditional posterior distribution. In practical applications, diagnostics

should be used to assess convergence (Carlin and Louis 2002, pp. 172–183, review many

of the options). Several parallel chains should also be run with widely spaced starting

values. Because the posterior distribution for the change point has a simple form,

alternative simulation methods are available that offer immediate convergence. These

alternative methods stochastically sample from the posterior distributions of the

coefficients, conditional on different change points.

3.3 Stochastic Sampling from the Conditional Posterior

The Gibbs sampler is computationally intensive, requiring thousands of iterations, but the

posterior distribution of h can be calculated exactly and quickly. Although analytical

results do not provide an expression for the unconditional posterior distribution of the

regression coefficients, the conditional posteriors given h are known to be multivariate t
whose means and covariance matrices are easily calculated. The unconditional posterior

for the coefficients is a stochastic mixture of these t distributions. Once the posterior

distribution for h is calculated, posterior simulation of the coefficients can proceed quickly.

A closed-form expression for the posterior probability distribution of h is derived by

Chin Choy and Broemling (1980):

pðh j yÞ }DðhÞ�n1 jM1j�1=2; h ¼ 1; . . . ; T � 1

¼ 0; h ¼ T

�
; ð3Þ

where

n1 ¼ n0 þ T=2

DðhÞ ¼ s0 þ ½y� Xhb1�9yþ ½b0 � b1�9M0b0f g=2

b1 ¼ M�1
1 ½M0b0 þ X9hy�

M1 ¼ X9hXh þM0

M0 ¼ V�1
0 s0=n0:

With diffuse priors for the coefficients and precision, the posterior distribution of h may be

approximated even more simply by the likelihood in Eq. (2). We write the posterior

derived by Chin Choy and Broemeling that explicitly incorporates prior information as

pB(h j y) and the posterior based just on the likelihood function as pL(h j y). We compare

these alternative methods for calculating h and regression coefficients in a Monte Carlo

experiment below.

Posterior probabilities of the change points, pB(h j y) or pL(h j y), can be used for Bayesian

inference with stochastic sampling from the conditional posterior (SSCP). The unconditional

posterior distribution of the coefficients is a mixture of t distributions located at the condi-

tional posterior means, where the mixture probabilities are the posterior probabilities of h,

pðb j yÞ ¼
XT�1

h¼1

tðb1;V1; 2n1Þpðh j yÞ;

where

V1 ¼ M�1
1 DðhÞ=n1:
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With diffuse priors, V1 is approximately equal to the OLS covariance matrix, estimated

for a given value of h. SSCP proceeds by obtaining N draws of indices, t ¼ 1, . . . , T �
1, with probability p(h j y). The frequency of each index indicates the number of draws

to obtain from each conditional posterior distribution of the coefficients. Simulating

from the multivariate t(b1, V1, 2n1) begins by generating a draw from the multivariate

normal distribution N(b1, V1) and scaling by w1/2, where w is a random draw from a v2/

2n1 on 2n1 degrees of freedom. In contrast to the Gibbs sampler, convergence is

immediate with the SSCP algorithm. Each draw from the conditional posterior

distribution of the regression coefficients is independent, and the posterior distribution

for h is calculated explicitly, rather than simulated. Large numbers of iterations can be

generated quickly to accurately map the shape of the unconditional posterior distribution

of coefficients.

The change-point model involves a type of Bayesian model averaging (Western 1996;

Bartels 1997). Bayesian model averaging provides inferences about parameters when a

variety of different models, M1, . . ., MK, may be true. For each possible model, a poste-

rior model probability p(Mi j y) is calculated. Posterior distributions of parameters are

weighted sums of the posteriors under each model where the weights are given by

p(Mi j y). For the change-point problem, a range of models is defined by different change

points. We are uncertain about the correct regression model because we are uncertain

about the location of the change point and the regressors, Xh. Like the usual model

averaging analysis, inference about the coefficients proceeds by taking the sum of their

conditional posteriors and weighting by the posterior probability of each model. In the

change-point analysis, the probability of each model is given by the posterior distribution

of the change point, p(h j y).

If a likelihood function can be written for the model parameters, why introduce

a Bayesian model for the change point? Maximum likelihood and Bayesian inference with

a uniform prior on h produce similar results for the location of the change point, but the

methods diverge in their approaches to the regression coefficients. Maximum likelihood

estimation of the coefficients conditions on the maximum likelihood estimates of h. This

approach is asymptotically justified where long time series reduce uncertainty about h. In

practice, time series are often short and considerable uncertainty accompanies the location

of h. Bayesian inference accounts for this uncertainty by integrating over, rather than

conditioning on, h. Bayesian standard errors for coefficients thus tend to be larger than the

maximum likelihood estimates because the Bayesian analysis provides a more realistic

accounting of prior uncertainty.

The Bayesian analysis also allows prior information about the location of a change

point to be used in the analysis. In many applications, change points are hypothesized

because of specific historical events that might transform a regression regime. The

Bayesian model allows the location of the change point to be uncertain but also allows

some changes points to be more likely than others. In this way, substantive information

about a particular historical process can be used in a probabilistic way.

Large research literatures in econometrics and statistics have examined models for

change points in time series. The diagnostic approach of Isaac and Griffin (1989) was

statistically justified by Brown et al. (1975), who propose plots of the cumulative sum of

recursive residuals—residuals obtained from out-of-sample predictions of subsets of a time

series. A more elaborate parametric structure was placed on the analysis of change points

by Box and Jenkins. Their transfer-function models allowed a mean shift in a response

variable, where the transfer function specified the location of a change point a priori (Box

et al. 1994). While transfer-function models allow more complex dynamics than often seen
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in applied work, the analysis does not allow the location of a change point to be inferred

from the data.

Modern time series analysis has proceeded in a variety of directions. Test statistics

based on the theory of Brown et al. (1975) can be inaccurate in the presence of trended

data. Hansen (2000) proposes a general test that also allows for structural change in

regressors. Bai and Perron (1998) consider an alternative generalization in which a number

of change points is estimated. Their analysis describes tests for the number of change

points and a simple sequential method for estimation. Multiple regimes might also be

specified by allowing the parameters of a model to evolve according to a time series

process. These time-varying parameter models allow coefficients to change through an

autoregressive process in which parameters are updated at each point in a series (Beck

1983; Harvey 1989). This model is more flexible than the Bayesian change-point model,

allowing for an indeterminate number of regimes. However, the time-varying parameter

models are highly parameterized and estimates can depend closely on initial values and

distributional assumptions about parameters. Like Bayesian models, time-varying

parameter models feature parameters that are viewed as random quantities.

Closer to the current approach that specifies the number of regimes a priori, a switching

regimes model defines a response variable controlled by a Markov process. For this

Markov-switching model, a transition matrix describes the probability of moving from one

regime to another for each time point in a series (Hamilton 1989). The Markov-switching

model is similar to the Bayesian change-point model. Both models draw a probability

distribution over the space of possible regimes. Like the change-point model, structural

coefficients in the switching model are a stochastic mixture where the mixture weights are

given by the probability of being in a particular regime (Hamilton 1994, pp. 685–699).

Bayesian analysis of the switching model, using the Gibbs sampler, is detailed by Kim and

Nelson (1999). They argue for posterior simulation in a Bayesian model over maximum

likelihood because the method yields finite-sample inferences and allows the inclusion of

prior information.

While temporal instability in regression is an active area of research, applied

researchers working with historical data in the fields of comparative politics and

international relations seldom model structural changes in time series. The current

Bayesian change-point model combines a simple structural specification with a coherent

approach to finite sample inference. It is less rigid than the transfer-function model that

specifies the change point a priori but offers more structure than the time-varying

parameter model that makes no assumptions about the number of regression regimes. Like

the Markov-switching models, the Bayesian change-point model takes a probabilistic

approach to regime change in regression.

4 A Monte Carlo Experiment

We compare the performance of the Gibbs sampler and the SSCP based on pB(h j y)

and based on pL(h j y) with a Monte Carlo experiment. In this experiment we generate y
from

yt ¼ b0 þ b1xt þ b3It þ b4Itxt þ et; t ¼ 1; 2; . . . ; 30;

where b0 ¼ .5, b1 ¼ .2, b2 ¼ �.3, b4 ¼ .2, It ¼ 1 if t � 21 and 0 otherwise (h ¼ 21), x is

a set of fixed regressors, and e is drawn randomly from a normal distribution with zero

mean and standard deviation .5. We generate 1000 vectors, y, and estimate the change
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point and the coefficients using our three methods. To speed computation, a uniform prior

is placed on h between t ¼ 3 and t ¼ 27. With 2000 iterations of the Gibbs sampler,

computation time was about two minutes using interpreted code written in R. Computation

time with the other methods was only a second or so. (R code for the Gibbs sampler and

the SSCP method is provided in the appendix.)

Monte Carlo results for h are reported in Table 1. We examine the performance of the

different methods by calculating the average value of the point estimate, E(ĥ). For the

Gibbs sampler, ĥ is the modal value of h* over the 2000 iterations of the Gibbs chain. For

Chin Choy and Broemeling’s (1980) closed-form Bayesian calculation, ĥ is given by the

posterior mode—that value of h that maximizes pB(h j y). Finally, ĥ for the method based

on the likelihood function is that which maximizes pL(h j y) or, equivalently, L(h; y). Bias

for each method is given by E(ĥ j y) � h. The dispersion of the estimates over Monte Carlo

trials is measured by the standard deviation of the point estimates, SD(ĥ). We also report

the mean squared error (MSE) given by the squared bias plus the variance of ĥ.

Monte Carlo results show that all three methods do similarly well, identifying the

change point in the regression at t ¼ 21. All three methods show a small upward bias.

Estimates based on the likelihood are less dispersed than the Gibbs sampler estimates and

the Bayesian closed-form calculation. This is because prior information about the precision

or regression coefficients does not enter into the maximum likelihood estimation of h.

Although prior information for the Bayesian methods is intended to be diffuse, Bayesian

estimates of h integrate over uncertainty about s and b. Consequently mean squared error

is also somewhat higher for the Bayesian methods than for the likelihood method.

Estimates from the Gibbs sampler are also more dispersed than those from the closed-form

calculation. This may be due to simulation error in the Gibbs chain that can be reduced by

running the chain longer.

Table 2 compares the performance of the three methods for Bayesian estimation of the

regression coefficients. The coefficients are estimated by their posterior expectations—

averages of the simulated coefficients. In this case we report the average of the posterior

expectations over 1000 Monte Carlo trials, the average of the posterior standard deviation,

and the mean squared error calculated as the squared bias of the posterior expectation plus

its Monte Carlo variance. Means of the posterior expectations indicate that all three

methods yield approximately unbiased estimates of the regression coefficients. Biases for

the Gibbs sampler and SSCP with pB(h j y) are slightly smaller than SSCP based on

pL(h j y). The bias in estimates based on the likelihood approximation is more than offset

by the relatively small variance. Mean squared error is consistently smaller for Bayesian

estimation with pL(h j y) compared to the other methods.

Table 1 Monte Carlo results for the change-point parameter, h, estimated with the

Gibbs sampler, the Bayesian closed-form expression of Chin Choy and Broemling

(1980), pB(h j y), and posterior approximations based on the likelihood pL(h j y)

E(ĥ) SD(ĥ) MSE

Gibbs sampler 21.405 2.259 7.076

pB(h j y) 21.417 1.977 5.915

pL(h j y) 21.336 1.286 3.439

Note. E(ĥ) is the average value of ĥ, the point estimate of the change point in 1000 Monte Carlo

trials; SD(ĥ) is the standard deviation of ĥ; MSE is the mean squared error given by the squared

bias, [E(ĥ) � ĥ]2, plus the variance, V(ĥ), where h ¼ 21.
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In sum, Monte Carlo results reveal only small differences in the performance of our

three methods for estimating a regression with a change point. Bias in estimates of both the

change-point parameter and the regression coefficients is small, and variability in standard

errors across the methods is not substantively large. Computationally, the SSCP

approaches are much simpler than the Gibbs sampler. Although the SSCP methods

estimate the regression coefficients with simulation, they involve only random generation

from known multivariate distributions.

5 Application: Real Wage Growth in Organization for
Economic Cooperation and Development Countries

Finally, we apply the Bayesian change-point model to an analysis of real data. We analyze

the pooled cross-sectional time series data that are common in comparative research in

political science and sociology. The challenges of modeling change points in panel data

are similar to those arising in univariate series. Structural breaks in univariate series are

usually motivated by an exogenous change in surrounding conditions that precipitates

a change in regression regimes. With panel data, such exogenous events are thought to

induce changes in the regressions for each unit in the sample. For example, Kenworthy’s

(2002) analysis of unemployment rates in 16 OECD (Organization for Economic Cooper-

ation and Development) countries suggests that the impact of corporatist institutions may

have declined from the 1980s to the 1990s as local-level collective bargaining increasingly

determined wages. Kenworthy (2002) thus splits his panel data into two time periods,

1980–1991 and 1992–1997, to allow for the change point. This approach to panel data

analysis and our change-point model both assume that the timing of a structural change is

identical for all units (countries) in the sample.

Our application reanalyzes the data of Western and Healy (1999), who examined real

wage growth in 18 OECD countries for the period 1965–1992. They argued that this

period can be divided into two wage-setting regimes. Under the first regime, unions were

able to raise wages and capture the benefits of productivity growth. Under the second

Table 2 Monte Carlo results for Bayesian estimation of the regression coefficients using

the Gibbs sampler and SSCP methods using pB(h j y) and pL(h j y)

Gibbs sampler pB(h j y) SSCP pL(h j y) SSCP

b0 ¼ .5 Mean .507 .530 .534

Mean SD .297 .277 .260

MSE .088 .078 .069

b1 ¼ .2 Mean .199 .211 .211

Mean SD .083 .074 .057

MSE .007 .006 .003

b2 ¼ �.3 Mean �.330 �.338 �.339

Mean SD .496 .463 .438

MSE .247 .216 .193

b3 ¼ .2 Mean .203 .212 .214

Mean SD .092 .082 .065

MSE .008 .007 .004

Note. Mean is the average value over 1000 Monte Carlo trials of the posterior expectation of the coefficient. Mean

SD is the average posterior standard deviation. MSE is the mean squared error given by the squared bias plus the

variance of the posterior expectation. SSCP is stochastic sampling from the conditional posterior.
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regime, following the first OPEC oil shock in 1973–1974, wage growth became much

more sensitive to market conditions (inflation and unemployment), and the positive effects

of unions and productivity growth on wages were weakened.

A summary of the wage growth data is reported in Table 3. The wage figures show the

average annual growth in hourly manufacturing wage rates. In all of the 18 countries

analyzed, the average annual rate of wage growth was slower in the period 1983–1992

than for 1966–1973. There is also substantial cross-national heterogeneity in average wage

growth. Some countries, such as Austria and Germany, have a high general level of wage

growth over the entire 1966–1992 period. Other countries, such as the United States and

New Zealand, have a low general level of wage growth.

Descriptive statistics for the independent variables in the analysis are reported for each

country in Table 4. Interest particularly focuses on changes in the effects of bargaining

centralization, labor government, and union density. We expect that the effects of these

measures of labor’s power resources became weaker following the end of the golden age

of postwar economic growth. For country i at time t, the shift in wage-setting regimes is

modeled as

yit ¼ a0 þ x9itaþ ItðhÞb0 þ ItðhÞðx9itbÞ þ eit; ð4Þ

where covariates are collected in the vector, xit, and the dummy variable It(h) equals 1 for

t � h and 0 otherwise. The error, eit, is assumed to follow a normal distribution. We

remove fixed effects from the data and reduce correlations among the predictors by

subracting country-level means from yit and xit (Hsiao 1986, p. 31). The model is fit to the

mean-deviated data.

Table 3 Summary of annual percentage growth in real hourly manufacturing

wage rates, 18 OECD countries

1966–1973 1974–1982 1983–1992

Australia 2.14 1.30 �1.53

Austria 5.31 2.61 1.98

Belgium 5.91 2.90 .29

Canada 3.34 1.52 �.11

Denmark 5.75 1.70 1.15

Finland 5.55 1.17 2.19

France 5.06 3.11 .68

Germany 4.56 1.56 2.08

Ireland 6.32 3.77 .83

Italy 5.70 2.41 1.83

Japan 9.05 1.38 1.50

Netherlands 3.70 .94 .70

New Zealand 2.86 �.41 �2.05

Norway 3.79 2.00 1.73

Sweden 4.19 .22 .83

Switzerland 1.74 .67 .87

United Kingdom 3.15 1.01 2.76

United States 1.35 �.49 �.74

Average 4.38 1.45 .85

Source. Western and Healy (1999).
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Exploratory analysis strongly indicates a change point in 1976. By fitting linear

regressions for h ¼ 1966 . . . , 1990, we see that the best-fitting model is obtained at h ¼
1976 (Fig. 3). The R-square plot of Fig. 3 is approximately proportional to the profile log

likelihood of h and the log posterior marginal distribution under a flat prior. Because

support for the change point is presented in the log scale, Fig. 3 tends to overstate evidence

for structural break in the time series in nearby years. In fact, calculation in the unlogged

scale shows that the posterior probability of a change point in 1976 is 92%. For these data,

conventional analysis (that conditions on the change point) and Bayesian analysis (that

allows prior uncertainty) yield similar results.

We compare an OLS model, assuming h ¼ 1976, to two Bayesian models. The first

puts a uniform prior on h and constrains the error variance to be constant across countries.

The second incorporates two realistic features of possible applications. Researchers

analyzing panel data are often concerned about error heterogeneity across units. Beck and

Katz (1995) suggest using a sandwich estimator to obtain consistent estimates of OLS

standard errors (although the method is subject to finite sample biases; see Long and Ervin

2000). In Bayesian or likelihood inference, error heterogeneity is accommodated through

the model specification. A simple model for the current application fits a separate error

variance for each country. Each of the 18 error variances is given an inverse gamma prior

distribution. We also introduce an informative prior by placing about half the probability

of the time series on h between 1968 and 1973. These dates mark the initial increase in

inflation throughout the OECD area and the first OPEC oil shock. The two Bayesian

models are estimated using the Gibbs sampler. Results are based on two parallel Gibbs

chains of 10,000 iterations after a burn-in of 1000 iterations. Convergence diagnostics and

Table 4 Means of the independent variables used in analysis of real wage growth in 18 OECD

countries, 1966–1992

(1) (2) (3) (4) (5) (6)

Australia 5.03 .15 1.85 .68 .40 51.25

Austria 2.44 �.03 3.16 .33 .72 64.07

Belgium 6.93 �.06 2.80 .51 .23 70.46

Canada 7.60 �.04 1.28 .11 .67 34.57

Denmark 5.62 �.16 1.43 .78 .43 79.52

Finland 4.40 �.09 3.07 .63 .48 78.24

France 6.13 .00 2.74 .33 .31 18.60

Germany 3.68 .02 2.62 .33 .40 40.37

Ireland 7.79 .04 3.11 .54 .15 59.49

Italy 10.24 �.07 3.84 .77 .18 53.89

Japan 1.96 �.18 4.33 .33 .00 31.08

Netherlands 5.87 �.03 2.09 .63 .18 37.79

New Zealand 3.00 �.10 .90 .62 .34 40.45

Norway 2.53 �.07 2.63 .91 .56 63.34

Sweden 2.45 �.10 1.66 .85 .73 86.62

Switzerland .51 .02 1.49 .33 .29 33.28

United Kingdom 6.68 �.04 2.01 .33 .35 50.07

United States 6.18 .05 .80 .07 .26 23.22

Note. Column headings are as follows: (1) unemployment; (2) inflation (first difference); (3) productivity growth;

(4) bargaining centralization; (5) labor government; and (6) union density.

Source. Western and Healy (1999).
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inspection of the trace plots indicate adequate mixing over the parameter space. (WinBugs
code for these models is reported in the appendix.)

Results for the regression coefficients in Table 5 contrast with OLS estimates, using

the 1976 change point with the Bayesian estimates. The OLS results suggest only the

significant effect of productivity growth on real wage growth from the mid-1960s to the

mid-1970s. The estimate for the period effect, b0 in the second column of Table 5, indicates

that real wage growth slowed by about three percentage points across the OECD. Results

for the post-1975 regime show that the effects of all predictors have moved in the negative

direction. However, only the inflation effect is highly likely to have shifted from the first to

the second regime. Separate analysis indicates that the bargaining level and inflation effects

in the second regime are likely to be negative. Comparing the OLS results to the first

Bayesian model with constant error variance suggests few differences in the results. While

the Bayesian analysis tends to produce more conservative results than conventional analysis

without prior information, evidence for the break point is so strong in the current data that it

makes little difference if we condition on the assumption that h ¼ 1976.

Columns 5 and 6 of Table 5 report results for the error heterogeneity model that also

includes an informative prior for h. The prior on h places about half the prior probability

from 1968 to 1973. Still the posterior expectation of h at 1976 is almost identical to that

under the noninformative prior. In the first regime, the error-heterogeneity model provides

relatively strong evidence for the effects of left government, unemployment, and

productivity growth. Slight improvements in the results may be due to heteroscedasticity

in the data that contributes to inefficiency in OLS. In the second regime, there is strong

evidence that effects of left government and inflation have become increasingly negative.

The final column of Table 5 shows the net effects of the predictors in the second regime.

Posterior distributions of these net effects can be calculated directly from the Gibbs output.

Summing iterates of coefficients from the first and second regimes gives draws from the

posterior distribution of the net effects. The net effects suggest that the coefficients of
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Fig. 3 Plot of R2 statistics for linear regressions on wage growth data, with change points h ¼
1966 . . ., 1990, 18 OECD countries 1966–1992.
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Table 5 Coefficients (standard errors) from normal linear and Bayesian change-point models of real wage growth, 18 OECD countries, 1965–1992 (N ¼ 483)

Bayesian change point estimates

OLS estimates
Constant r2 Nonconstant r2

1966–1975
(1)

1976–1992
(2)

First
regime

(3)

Second
regime

(4)

First
regime

(5)

Second
regime

(6)

Second regime
net effects

(5)þ(6)

Change point (h) - 1976.00 - 1976.03 (.19) - 1976.02 (.19) -

Intercept 1.80 (.31) �2.73 (.36) 1.78 (.32) �2.72 (.11) 1.43 (.32) �2.25 (.28) �.82 (.15)

Bargaining level �.41 (.78) �.82 (.96) �.41 (.78) �.82 (.96) .18 (.78) �1.27 (.96) �1.09 (.72)

Left government .57 (.50) �.88 (.62) .57 (.51) �.88 (.63) .85 (.46) �1.31 (.63) �.46 (.33)

Unemployment �.07 (.11) �.17 (.13) �.07 (.11) �.17 (.13) �.15 (.10) �.16 (.13) �.30 (.06)

Union density .08 (.21) �.55 (.31) .07 (.21) �.54 (.32) .01 (.19) �.44 (.32) �.43 (.20)

Inflation .03 (.06) �.22 (.08) .03 (.06) �.22 (.09) .02 (.06) �.27 (.09) �.25 (.06)

Productivity growth .22 (.08) �.11 (.11) .22 (.08) �.10 (.11) .26 (.08) �.16 (.11) .10 (.07)

Note. Coefficients for the intercept are estimates of a0 and b0 in Eq. (2). Union density coefficients have been multiplied by 10. The nonconstant error variance model also includes an

informative prior h. The change point of 1976 for the OLS model is set by assumption.

3
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unemployment, union density, and inflation became large and negative after the mid-

1970s. However, we cannot confidently conclude that wages rise with productivity as they

did in the late 1960s.

6 Discussion

Although political scientists and sociologists have become sensitized to the possibility of

historical variability in quantitative results, conventional methods for studying that

variability have several important shortcomings. Commonly, a putative change point in

a time series is chosen a priori, and this is modeled with a dummy variable or else the

sample is split into two periods. In this approach, the location of the change point is simply

assumed and an analysis may yield positive results even though the data may strongly

indicate a change point at a different time. Alternatively, Isaac and Griffin (1989), in an

important paper on temporal instability in regression, suggest a diagnostic approach that

allows the location of a change point to be found empirically. Although their approach

has some advantages over assuming a change point’s location, the diagnostic method

has not been widely used because it fails to provide statistical inferences about struc-

tural change.

We describe a Bayesian change-point analysis of structural change in a time series. The

Bayesian analysis, like Isaac and Griffin’s (1989) method, helps diagnose the location of

structural change in regression relationships. But like standard parametric approaches to

period effects, the Bayesian analysis also provides statistical inferences about regression

coefficients. Improving over both the usual approaches, Bayesian analysis also provides

a statistical inference about the location of the change point. Indeed, the location of the

change point can be simply found with standard statistical software. A Monte Carlo

experiment showed that a Bayesian change-point model is feasibly estimated with the

Gibbs sampler or by stochastically sampling from the conditional posteriors for the

regression coefficients.

The Bayesian model was illustrated in an analysis of real wage growth in the OECD

countries between 1966 and 1992. Although many researchers claimed that this recent

period of slow economic growth marks the end of the golden age of postwar economic

expansion, the idea of two wage regimes in the postwar political economy has not been

rigorously examined. The Bayesian analysis provides clear evidence of a structural break

in the wage growth process in 1976. This analysis indicates the clear importance of

a sensitivity to historical variation in large-scale causal processes. We believe the anal-

ysis also underlines the importance of methods that can detect and provide statistical infer-

ences about such variability.

Appendix

R Code for the Gibbs Sampler and SSCP

# bcp.R

# R code for Bayesian change point estimation described in the paper,

# Bruce Western and meredith Kleykamp, ‘‘A Bayesian Change Point Model for

# Historical Time Series Analysis.’’ The paper describes a Gibbs sampler

# and several approaches to stochastic sampling from the conditional

# posterior (SSCP) of regression coefficients.

# Bruce Western, April 27, 2004
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library(MASS)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Defining some useful functions

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Linear predictor function

lp ,- function(x,b) as.vector(apply(t(x)*b,2,sum))

# Normal likelihood function

n.like ,- function(eta,y,sigma) f
ll ,- sum(dnorm(y,mean¼eta,sigma,log¼TRUE))

exp(ll) g
# Determinant of a matrix

det ,- function(x) prod(eigen(x)$values)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Gibbs function

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

gibbs ,- function(X, y, tstar¼length(y)/2, iter¼500, burn¼100) f
# User supplies X, a matrix including unit vector in col. 1 for intercept

# y, a dep var vector

# tstar, start value for the change-point

# iter, number of iteration in the gibbs sampler

# burn, number of burn-in iterations

# OLS fit

out ,- lm(y;X-1)

p ,- ncol(X)

n ,- length(y)

# Setting up data

grid1 ,- (pþ1):(n-p-1)

XX ,- as.list(grid1)

for(i in grid1) f
tt ,- (1:n)>¼i

XX[[i-min(grid1)þ1]] ,- cbind(X, X * tt)

g

# Priors

pb ,- rep(0,2*p)

pvb ,- diag(rep(1e6,2*p))

pvbi ,- diag(1/rep(1e6,2*p))

ps2 ,- .001

pdf ,- .001

# Start values

bstar ,- rep(out$coef,2)

# Initializing parameter vectors

beta ,- h ,- tt ,- NULL
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k ,- length(grid1)

temp ,- rep(NA,k)

thetas ,- grid1

# Posterior variance quantities

posta ,- (n/2)þpdf

for(i in 1:(iterþburn)) f
indt ,- as.numeric((1:n)>¼tstar)

XZ ,- cbind(X, X*indt)

xx ,- crossprod(XZ)

xy ,- crossprod(XZ,y)

yhat ,- lp(XZ, bstar)

estar ,- y-yhat

posts2 ,- ps2þsum(estar^2)

hstar ,- rgamma(1,posta,rate¼posts2/2)

postvb ,- solve(pvbiþ(xx*hstar))

postb ,- as.vector(postvb %*% (xy*hstar))

bstar ,- as.vector(mvrnorm(1,postb,postvb))

temp ,- unlist(lapply(lapply(XX,lp,bstar),n.like,y,sqrt(1/hstar)))

postt ,- temp/sum(temp)

tstar ,- sample(thetas, 1, prob¼postt)

if(i>burn)f
beta ,- rbind(beta,bstar)

h ,- c(h,hstar)

tt ,- c(tt,tstar)

g g
mode ,- table(tt)

mode ,- names(mode)[mode¼¼max(mode)]

output ,- list(grid1,tt,h,beta,as.numeric(mode))

names(output) ,- c(‘‘time’’,‘‘theta’’,‘‘precision’’,‘‘beta’’,‘‘mode of theta’’)

output

g

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# SSCP function

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

sscp ,- function(X, y, pmu, pvb, pa, pb, bayes¼T) f
# User supplies: X, a matrix including unit vector in col. 1 for intercept

# y, a dep var vector

# pmu, vector of prior means

# pvb, prior covariance matrix for coefs

# pa, prior degrees of freedom

# pb, prior sums of squares

# bayes¼T, coefs based on bayes posterior probs

# bayes¼F, coefs based on llik posterior probs

n ,- length(y)

p ,- ncol(X)
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# Grid over which break point is searched

ind ,- (pþ1):(n-p-1)

tau ,- solve(pvb)*pb/pa

betam ,- betapv ,- ppr ,- as.list(ind)

ppm ,- ll ,- rep(NA,length(ind))

postb ,- NULL

astar ,- pa þ (n/2)

for(i in ind) f
indt ,- as.numeric((1:n) .¼ i)

xm ,- cbind(X, indt*X)

ols ,- lm(y ; xm - 1)

yhat ,- predict(ols)

sigma ,- summary(ols)$sigma

ll[i-p] ,- n.like(yhat, y, sigma)

pxpx ,- crossprod(xm) þ tau

betam[[i-p]] ,- solve(pxpx) %*% (tau%*%pmu + crossprod(xm, y))

e ,- as.vector(y - (xm%*%betam[[i-p]]))

b2 ,- as.vector(crossprod(pmu - betam[[i-]],tau%*%pmu))

dm ,- pb þ sum(e*y)/2 þ b2/2

ppr[[i-p]] ,- (astar/dm) * pxpx

ppm[i-p] ,- dm^(-astar) * det(pxpx)^(-.5)

g
ppm ,- ppm/sum(ppm)

ppll ,- ll/sum(ll)

output ,- cbind(ppm,ppll)

dimnames(output) ,- list(as.character(ind),c(‘‘Bayes’’,‘‘LL’’))

# SSCP for coefficients

if(bayes) f
mixind ,- table(sample(ind,10000,replace¼TRUE,prob¼ppm))

mode ,- ind[ppm¼¼max(ppm)] g
else f
mixind ,- table(sample(ind,10000,replace¼TRUE,prob¼ppll))

mode ,- ind[ppll¼¼max(ppll)] g
newind ,- as.numeric(names(mixind))

for(i in 1:length(newind)) f
mu ,- as.vector(betam[[newind[i]-p]])

Sigma ,- solve(ppr[[newind[i]-p]])

normb ,- mvrnorm(mixind[i], mu, Sigma)

tb ,- normb/sqrt(rchisq(1,astar)/astar)

postb ,- rbind(postb,tb) g

output ,- list(ind, output, postb, as.numeric(mode))

names(output) ,- c(‘‘time’’,‘‘p(theta j y)’’,‘‘beta’’,‘‘mode of theta’’)

output

g
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Winbugs Code for the Analysis of OECD Data

# Model 1, constant error variance

model

f
for(i in 1:N) f

y[i] ; dnorm(mu[i], tau)

mu[i] ,- alpha0 þ inprod(alpha[],x[i,]) þ beta0*J[i] þ J[i]*inprod(beta[],x[i,])

J[i] ,- step(yr[i] - cp - 0.5)

g
for(i in 1:p) f

alpha[i] ; dnorm(0.0, 1.0E-6)

beta[i] ; dnorm(0.0, 1.0E-6)

g
for(i in 1:T) f

priort[i] ,- punif[i]/sum(punif[])

g
alpha0 ; dnorm(0.0, 1.0E-6)

beta0 ; dnorm(0.0, 1.0E-6)

cp ; dcat(priort[])

tau ; dgamma(.001, 0.001)

g

# Model 2, heterogeneous error variance

model

f
for(i in 1:N) f

y[i] ; dnorm(mu[i], tau[cc[i]])

mu[i] ,- alpha0 þ inprod(alpha[],x[i,]) þ beta0*J[i] þ J[i]*inprod(beta[],x[i,])

J[i] ,- step(yr[i] - cp - 0.5)

g
for(i in 1:p) f
alpha[i] ; dnorm(0.0, 1.0E-6)

beta[i] ; dnorm(0.0, 1.0E-6)

g
for(i in 1:NC) f

tau[i] ; dgamma(.001, 0.001)

g
for(i in 1:T) f

priort[i] ,- prior[i]/sum(prior[])

g
alpha0 ; dnorm(0.0, 1.0E-6)

beta0 ; dnorm(0.0, 1.0E-6)

cp ; dcat(priort[])

g
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